Modularizing the Formal Description
of a Database System

I.S. Fitzgerald and C.B. Jones*

January 23, 1990

Abstract

Specification languages have been proposed, and are being developed, which offer ways of
splitting specifications into separate components or modules. It is important that such languages
are able to cope with modularizations which are required by realistic specification tasks. This paper
offers a challenge problem in modularization based on a description® is of an existing database
system. The chosen modularization is motivated by the need 1o separate coherent units about which
useful properties can be deduced.

Introduction

Module facilities in programming [anguages (such as Modula, Ada®, Clu) have long been regarded as
important tools for coping with the size and complexity of today’s programming tasks. As formal meth-
ods of software specification and development are applied to larger problems, so the need arises here
too for facilities supporting a modular approach. Hence, for example, the work to develop and incor-
porate such facilities in BSI Standard VDM [And88], COLD-K [Jon88] and the RAISE Specification
Language (RSL) [Haf89]. It is important to identifly the goals of such techniques in the context of a
formal development method.

One goal is the cffective separation of concerns within a specification. This allows formal reasonin g
about a part of a system unencumbered by ‘baggage’ which describes unrelated parts of the same system.
Informally, a reader can understand a specification as ‘the sum of its parts’ rather than as a monolithic
whole. In a model-oriented specification, elfective separation of concerns motivates the provision of an
interface around each module, stating what the module cxpects of the rest of the specification and what
properties the module guarantees (o exhibit. The interface delineales the model changes which can be
made within the module without affecting the rest of the specification. ¥ changes in one module do
aflect the rest of the specification, the structuring mechanism can help control those changes.

In the context of a formal development, separation of concerns might allow [Mor90] separaie devel-
opment of modules (via data reification, for example) provided an appropriate module calculus at the
code level ensures the ‘correct’ recombination of code.

Another goal is module generality. This is as desirable for specification modules as for code. Pa-
rameterization allows some modules describing relatively general concepts (o be used in a variety of
COntexts.

These goals lead the authors to suggest criteria which should govern the choice of structure in a
modular specification:

“This paper has been accepted for the VDM'90 Symposium and is 1o be published in the Proceedings {to appear in the
Springer-Verlag LNCS Series).

'As a concession 10 common usage, the authors employ the terms “specification” and *description” interchangeably in this
paper.

Trademark; US Depl. of Defense, Ada Joint Program Office

* the complexity of component modules as measured by the number of hypotheses in the statements
of theorems about each module.

¢ the suitability of generalized modules for re-use in other specifications;

* intuitive clarity of the structuring — the module structure should aid rather than impede compre-
hension of the whole specification;

Note that none of these critetia concern the suitability of a specification’s module structure for formal
development; see Section 4.1 for a further consideration.

This paper presents a case study in the modular structuring of a previously ‘flat” specification. The
study aims to cast light on the problems of choosing a structure for a modular specification, as well as
illustrating some desirable features in the yet-to-be-fully-defined module formalism used and pointing
out consequent problems for its semantics. These objectives are not specific to any one specification or
development method, so the exercise described here may be regarded as a ‘challenge problem’.

The description below is of an existing database system. The advantages of basing the study on an
existing piece of software extend beyond honesty and masochism since some of the arcane choices made
in the actual development of the software pose interesting problems for the modularization, notably in
handling the curious distribution of typing information in the database structure described.

The specification is presented in Meta-1V, the specification language of VDM, and was prompted by
astudy in RSL. ‘Classical VDM’ [Jon80, BI82] has no structuring facilities, but introductory material on
structuring techniques in VDM can be found in [Jon90] and [Sha90]. Proposals regarding the semantics
of VDM modules can be found in [Bea88]. The module syniax used below is related to that of [BSI).

1 A Flat Description

This section introduces the database system whose description is being considered by giving a ‘flat’ or
single level description; the task of modularization is begun in Section 2. ‘NDB’ stood for ‘Norman’s
Database’ and was described in {WS§79}; it eventually became an IBM product, more prosaically named
the *Non-programmer Database’ [IBM]. NDB is a nicely engineered binary relational (cf. {Dat86) for
general database matters) database system which was designed with the non-expert user in mind. Some
of the engineering decisions which both make it easy to use and limit it to medium-sized databases arc
discussed in Section 4.1. A particularly pleasing aspect of the design is the way in which so-called
‘meta-data’ (i.e. information about the relations etc.) is handled. A fuller description than is justificd
here of the development of the formal description of NDB is given in [Wal90]. Here, a brief introduction
must suffice to identify the main points in the specification. ‘Entities’ are the basic objects about which
information is stored. Each entity is identified by a unique ‘Entity Identifier’ (Eid). Most entities have
values (here, it is sufficient 1o have this set unanaiysed as Value) but entities without values can exist.
The relationship between entity identifiers and their values can be stored in an ‘Entity map’ which is
Eid -% [Value).

In order to introduce typing constraints, entities are grouped into ‘Entity Sets’ whose names arc in
Esetnm. In this version of the formal description,? entity sets do not have to be disjoint in the sense that
the same entity identifier can belong 10 more than one set (e.g. an individual could be both a customer
and an employee): the grouping is therefore stored as an entity set map which is Esetnm -2~ Eid-set.

Many relations can be stored in a database and, as one might expect, they can be named (Rnm).
But a name can be used for more than one relation (c.g. the name ‘Owns’ might relate departments to
machinery and people to cars) and a ‘Relation Key’ (Rkey) is therefore made to contain the entity set
names of both the *from set” (f5) and “to sct’ {(¢5) of a rclation, thus:

3See [Wal90] for a discussion of alternative architectures and their models.

Rkey @ nm [Rnm]
f§ © Esetnm
ts : Esetnm
Notice that the name itself (nm) is optional: un-named relations arise as inverses of user-given relations.
Having captured most of the typing information in the relation key, the ‘Relation Information’
(Rinf) is little more than a set of tuples. What is extra is information about the ‘Mapping type’ (Mapip)
which records whether the relation is restricted 10 be one-to-one (1:1), one-to-many (1:M), etc. A Tuple
contains two entity identifiers — one as a ‘from value’ (fv) and one as a ‘to value’ (#v), thus:

Maptp = {1:1, :M, M:1, M:M}
Tuple :: fv . Eid
tv @ Eid
Rinf 0 tp © Maptp
r : Tuple-set
The main ‘Relation Map’ is then Rkey - Rinf

VDM specifications are normally built around a state. Here, Ndb collects the three componcnis
described above:

Ndb :: esm : Esetnm -™ Eid-set
em . Eid - [Value)
rm . Rkey <% Rinf
This sct of objects needs to be restricted by a data type invariant whose clauses require that for an Ndb
to be well-formed it must be such that:

* cach entity in the domain of em must be present in one (or more) entity sef;

the entity set names in fs and ts of cach relation key must be in the domain of the entity set map
(esm};

L]

¢ the sets of tuples in each relation information must respect the Mapip,

¢ the fv and v of each tuple must respect the typing information (as given by fs/ts) in the relation
key.

This invariant is presented formally in Appendix A where the whole specification is given. The ini-
tial state contains empty mappings for all three components. Operations are defined in Appendix A
which add (ADDES) or delete (DELES) entity sets, add (ADDENT) or delcte (DELENT) entitics, add
(ADDREL) or delete (DELREL)Y empty relations, add (ADDTUP) or delete (DELTUP) tuples. Notice
that, although described as a flat specification, it is parameterized on the types Eid, Value, Esetnm, Relnm
about which no information is required other than that an cquality operator is available.

2 A First Modularization

It is explained in the introduction that the main aim of the modularization considered in this paper is
to provide general concepts. The obvious concept which is a candidate for re-use in the foregoing
specification is the relation. It can be generalized from the specifics of NDB in a number of ways. In
this section, a simple generalization forms the basis of a modularization.

2.1 N-ary Relation

The most obvious generalization is from NDB's restriction to binary refations to allow ‘n-ary’ relations.
The idea is to create a module which specifies relations of arbitrary arity which can be used in a spec-
ification of NDB and, perhaps, a range of other database system specifications. This gives rise to the
module RELATION shown in Appendix B.1.

Since a tuple may now contain an arbitrary number of attribute values, the type Tuple should be
specified Attr > E where E is an entity type.* Astr is the type of permissible attribute names. As far
as RELATION is concerned, Attr can be parametric to the module. A relation is still specified as a set
of tuples.® The invariant inv-Relation is necessary to ensure that a relation consists only of tuples with
the same attributes.

A number of functions are defined to complete the encapsulation. The formalism used in this paper
assumes the hiding of data model representations - access to exported data types (and the module state,
if any) is permitted only via exported functions and operations. This approach has the advantage that
semantically consistent changes to a representation in one module do not force changes in importing
modules. However, it often necessitates the trivial renaming of standard data type operators so that they
can be explicitly exported (e.g. value,empty in Appendix B.1), thereby inflating the module interface.

2.2 NDB specified using RELATION

The specification of NDB which results from the use of RELATION is shown in the module FIRST-NDB
in Appendix B.2. The parameters of RELATION are instantiated by particular types and

RELATIONI[EId, Fsel)

is imported. The main body of FIRST-NDB accesses relations solely through the interface to RELATION
using the exported functions and types. Otherwise, the body of FIRST-NDB is much the same as that
of the flat specification.

2.3 Shortcomings of the First Modularization

What has been gained by this structuring? Certainly the aim of module re-use has been achieved, but at
a price: it is difficult for the reader to comprehend the structured specification as the ‘sum of its parts’
because there remain properties of relations which could be encapsulated in the relevant module, but
arc left to importing modules 1o describe.

Consider the function attr-match defined in the interface 10 RELATION: it partitions the set of all
possible Relations into those of equivalent ‘shape’ (in the sense that they have the same sets of Atirs).
But this fact is not stated in the type Relation; the module RELATION cexports the function attr-match
which has to be used by inv-Ndb. More could be gained (for the price of the modularzation) if the
RELATION module were to include this ‘shape’ information. Given the current specification language
this can not be done. The extensions to the language, which are discussed in the next section, not only
facilitate this encapsulation but also make further generalizations possible.

In support of this, consider the statecment of theorems about refations exported by the RELATION
module, Theorems about typing must have a typing mechanism fixed in the hypotheses. Thus (using
an obvious with notation) one could assert the invariant-preservation propeny of add:

*Nole that the type £ is parameiric to this module. NDB has both a Value and Eid set. This division comes from one,
rather concrele, view of how entities are to be handled. What needs to be fixed at this stage is no more than a name (£) for
lhe set of entities and the fact that equality is a valid operator for pairs of entities,

3The separation of Relation and Tuple inlo two modules resukts s much duplication and ne useful generalization.

with RELATIONIE, Attr),
t e Tuple; r e Relation;

@ pre-add(r,)
- add(r, 1y € Relation

But in order to make an assertion about the *shape’ of the relations, one must write:

with RELATIONIE, Attr);
t € Tuple;re Relation,
pre-add(r, t);
as € Attr-sef;

attr-match(r, as)
[Th2 E

attr-match(add(r,t), as)

3 Modularization with Typing and Normalization

Once the notion of shape (in the sense of Section 2.3) has been introduced into the module describing
relations, the way is clear to fixing a number of other properties there, including the typing of values in
tuples/relations and the expression of functional dependencies between attributes. It could be argued that
this goes against our principle of generalization, but it is clear that choosing a modularization involves
balancing the generality of derived modules with their applicability.

This section discusses the process described above and considers the required extensions to the
specification language.

3.1 TYPED-RELATION
Considerations leading to the fixing of {urther properties in the relation module are:

« The type checking, which in NDB is governed by the esm mapping (Esetnm -~ Eid-set), can be
generalized to a type checking function gpe: assuming some elementary set of entity types (Ep),
tpe must be of type ExEp — B. The subsequent specialization of this in NDBRELATION rcsults
in an interesting parameter (sce Section 3.2.1).

* The typing information in the flat specification is carried in the Rkey of each relation (in the f5 and
ts fields). In a specification based on a generalized module for relations, it is reasonable 10 move
this information into the relation moduie. Note that, since the relation module deals with a-ary
refations, the typing information must be expressed in a mapping (tpm) which is Aur "5 Eip.
Notice that the entity type (£tp) links back to the generalized type checking,

» Clearly, there must be attendant generalization of Mapip. A wide class of ‘normalizations’(also
called ‘functional dependencies’) of scts of tuples can be described by specifying a set of con-
straints each of which requires that the value under one Artr is determined by the values under a
specified set of Attrs. Thus, a many-to-one relation might have a (single) constraint {{1's}, TS}
(see conv in Appendix C.2).

These considerations ~ in conjunction with the earlicr work on RELATION — give rise to the module
TYPED-RELATION (see Appendix C.1) which has four sorts of parameter. The ‘trivial’ type parameters
are E, Etp, AttrS. The shape of a particular relation is governed by tpm; type information is given by
tpc, and the normalization is govemed by the parameter norm. '

The various functions defined in terms of these models (see Appendix C.1) should be obvious. In
terms of these functions, 2 number of lemmas can be formulated (and proved via their models)’. For

SEip has been added so that it is available for the signatures of pm and ipe.
"The equivalent of Thl in the context of TYPED-RELATION is clear. Th3 is like Th2, but *tighter' in the sense that the
normalization constraints are fixed in the latier.

example, the uniform ability to add new Tuples to Relations of the same type if there are no normalization
constraints can be written:
with TYPED-RELATION(E, Etp, Attr, tpm, tpc, { }];
t € Tuple; r € Relation;
pre-add(r,)
add(r, £y € Relation

Th3

Whereas the ability, with any normalization constraint, to insert the first Tuple into a Relation can be
written:
with TYPED-RELATION{E, Etp, Attr, tpm, tpc, normy;
te Tuple

Thd add(empty(), 1} € Relation

This theory is general in the sense that its results are true for any instantiation of TYPED-RELATION:
specific results about NDBRELATION are given in Section 4.2.

3.2 Specifying NDB using TYPED-RELATION

The final structured version of the NDB specification is in Appendices C.2 and C.3. As in the flat spec-
ification, the main module NDB is parameterized over primitive types only. It uses TYPED-RELATION
as in Appendix C.1 but, rather than import TYPED-RELATION directly, access to its exported types
and operators comes via a module NDBRELATION which partially particularizes TYPED-RELATION.,
NDBRELATION is peculiar 1o NDB and is therefore nested in the NDB module. Nesting provides a
fixed context in which NDBRELATION can be interpreted and thus reduces the size of its parameter list
(see Section 3.2.2).
Section 3.2.1 considers NDBRELATION alone. Section 3.2.2 places it in context in NDB.

3.2.1 NDBRELATION

NDBRELATION is shown in Appendix C.2 isolated and out of context. It is 10 be interpreted as nested
in the NDB module as shown in Appendix C.3. Relevant parts of that context are shown in the let
clauses, bul for semantic purposes may be regarded as parameters.

NDBRELATION can be viewed as providing a translation mechanism, expressing NDB-specilic
concepts in the the more gencral framework of TYPED-RELATION. It ‘looks up’ the relevant instance
of TYPED-RELATION for a given set of typing and normalization criteria and re-cxports s public
types and operations. The parameters identifying the relevant TYPED-RELATION are detcrmined in a
number of ways:

* Some names (Eid, Esetnm, Mapip) set the basic types and come from the module’s nested context.
These are common to all the versions of TYPED-RELATION used by NDBRELATION.

+ Parameters lo NDBRELATION give the typing and normalization information which differentiates
specific instances of TYPED-RELATION as they arise in NDB (for example in modelling the
dependent type situation described below).

+ Some NDB-specific concepts arc fixed within NDBRELATION, e.g. the binary nature of NDB
relations is cstablished by fixing a two-value Fsel as the attribute set.

The function tpc defines a very simple type-checking mechanism based on the supplied type map
esm. Note, however, that esm is an unusual parameter. It is a component of the NDB state and is
therefore subject to change by operations such as ADDES.

A theory can be developed about this specialization of TYPED-RELATION:

with NDBRELATIONI[fs, ts, esm, M:M];

@ te Tuple;r e Relation
! add(r,t) € Relation

with NDBRELATIONISs, ts, esm, mapip];
te Tuple

Tho add{empty(), 1) € Relation

3.22 NDBRELATION in NDB

When nested in context in NDB (Appendix C.3), NDBRELATION is used as a source of types and
operators which are re-exported from TYPED-RELATION, but with some of TYPED-RELATION's pa-
rameters fixed. The full instantiation of TYPED-RELATION takes place in the invariant’s final conjunct
where, in the authors’ notation,

Relation[fs, ts, esm, tp]

refers to
NDBRELATIONI(f3, ts, esm, ip] . Relation

which in tumn refers to
TYPED-RELATION(Eid, Esetnm, Fsel, tm, ipc, conv(mip), fs, ts, esm, tp) . Relation

In Scction 1 the Relation Map (Rkey —~+ Rinf) was introduced. Typing and normalization informa-
tion about each relation is distributed across the Rkey and the Rinf. The Rinf contains a relation r which
conforms to that information. In the flat specification, the notion of conformance is made precise in the
invariant over the whole database. In the structured specification (Appendix C.3), the typing and nor-
malization mechanisms built into the TYPED-RELATION module permit the removal of the definition
of conformance from inv-Ndb. The invariant now need only state r € Relation(fs, ts, esm, ip]. The type
of r in Rinf should cover all the versions of Relation exported by NDBRELATION, This is indicated by
the {*] notation,

Observe the complexity of the type dependencies involved in the definition of Ndb. The type of r in
Rinf 15 dependent on the value of the 1p component in the Riaf, the fs and ts values in the Rkey and the
value of the esm component of Ndb. If a direct type dependency notation were available in Meta-1V,
onc might writc something like:

Rkey = nm : [Rnm)
fs o Esetnm
ts ¢ Esetnm

Rinf(fsp. 15, esmp) 0 tp @ Mapip
r . Relation(fs,, tsp, esmyp, tp]

Ndb :: esm . Esetnm = Eid-set
em 1 Eid -2 [Value)
rm ;. mk-Rkey(name, from-set, to-set); Rkey -+ Rinffrom-set, to-set, esm}
where Rinf is a type with formal parameters f5,, s,, csm,, instantiated in the type of the rm component
of Ndb.

NDB may be viewed as importing an indexed class of instances of TYPED-RELATION (this is done
via NDBRELATION). Operators as well as data types exporied by these instances must be differentiated
from one another by an index. The specification of ADDREL {Appendix C.3) iflustrates this in the post-
condition:

ADDREL (nm: [Rnm],fs, 1s: Esetnm, tp: Mapip)
extrd esm : Esetnm - Eid-set
wrrm : Rkey -5 Rinf
pre ...
post rm == rm U {mk-Rkey(am, f5, ts) v mk-Rinf (tp, empty[fs, ts, esm, ()}

The empty operator is qualified to indicate which empty is required. One must be able to reason about
the full range of emprys in order to discharge proof obligations. For example, the implementability
obligation on ADDREL involves quantification over the parameters of ADDREL and hence over the
parameters indexing empty.

The ability to reason about operators from two different sources in the same context is required.
The well-formedness of expressions such as the following (which might be part of a specification for a
relational JOIN operator, for example) is therefore called into question:

let rk; = mk-Rkey(nm;, f5;, ts)) in

{valuelfsy, tsy, esm, mtp){tL, f) = valuelfsy, t5o, esm, mipl(t2,1) |
11 € tuples{fsy, ts1, esm, mtp)(r(rm(rig) A
ty & wwplesifs;, sy, esm, mip)(r(rm(rk;)))}

where value and tuples are exported operators of the TYPED-RELATION module which can be defined
in the cbvious way.

This discussion raises an interesting question which the authors cannot claim to have resolved satis-
factorily. Where would the specifications of the operations of relational algebra be placed in a structure
such as this? Some alternatives can be briefly considered:

* The operations could be specified along with the whole database system (in the present case,
NDB; in Section 4.2, RDB or I5/1). Expressions involving different indexed versions of the
same operators would arise. Anyway, this is hardly an appropriate place for the specification of
opcrators as general as those of relational algebra.

* The operators could not be specified in TYPED-RELATION because that module’s definitions are
specific wo relations of one given ‘shape’. Thus operators with more than one instance of Relation
in their signature could not be specificd in their full generality.

* Perhaps a separate module for relational algebra is required. This would import the full range
of relations of all shapes and would export the fully gencral operators. The next problem is
to determine how that module would be used in, say, NDB. 1t will be necessary 1o show the
applicability of relational algebra operators on refations imported from NDBRELATION.

4 Related Topics

4.1 Modular Implementation

It is templing to assume that a modularization chosen for one purpose will also fulfilt other objectives.
It would indeed be nice if the decomposition which makes it easiest to understand a system would aiso
serve to control an efficient implementation via separate modules. This objective ts strongly underlics
[Mor90]). There is certainly no link between the modularization developed here (for understanding
the specification) and the actual structure of the product implementation of NDB. In order to dampen
enthusiasm for a search for such a modularization, a few of the mismatches are listed here:

* The actual implementation also stores the inverse of any relation so that the user does not expe-
rience surprising performance differences between responses 1o queries.®

¥This, and similar decisions, would make it inappropriate to use NDB for very large databases.

» Entitiesare generated for each relation so that meta-data (e.g. the f5/ts information about a relation)
can be stored as relations.®

+ In contrast to the preceding point, the link between Entities and Entity sets was handled by special
pointers in order to enhance performance.

¢ Corresponding to each Entity, a record is created which inter alia contains a pointer to a vector of
pointers: each element in this vector corresponds to one of the refations in which the entity is used
as a fv. Each of these pointers addresses what is in the general case (but there is an optimization
for M:1 and 1:1 relations) a vector of ‘C-element’ pointers where each C-clement points to the
Entity required as tv. This design was clearly tailored to the special case of binary relations, but
— it must be realized - confounds any separation of notions like Entity and Relation,!®

Waork on formally specifying, and implementing by refinement, another database system (‘MDB',
which was the database underlying the ‘Mule’ system) bears out the message that it is rarely possi-
ble, (for non-trivial problems) to obtain an efficient implementation by slavishly foilowing the module
structure of the specification. This should actually come as no surprise to anyone with experience of
specifications. Who, for example, would begin implementing GCD (Greatest Common Divisor), from a
specification given in terms of the intersection of the sets of divisors of the two numbers, by building set
operators? Specifications describe what a system is to do; not how to do it. This old battle cry applics
just as much to modularization as it does to post-conditions (see related arguments in (HJ§9]).

4.2 Re-use of TYPED-RELATION

In an attempt to illustrate its potentiat for re-use, the generalized TYPED-RELATION module has been
used to specify two other database systems. The specifications (Appendix D) are bricfly introduced
below.

4.2.1 RDB

RDB (Appendix D.1) illustrates gencralization to an #-ary relational database with a different normal-
ization scheme to that of NDB. Only simple entity typing is used.

The whole databasc specification module RDB is parameterized over relevant primitive types dnd
an entity type-checking function. The nested module RDBRELATION lorms the interface w0 TYPED-
RELATION in a way analogous 1o NDBRELATION. 1t differs in that it fixes a typing mechanism (ipe
comes from context) and parameterizes over a relationship type rather than a map type.

Within RDBRELATION, rtp is interpreted as a pair consisting of a set of altributes participant in
a relation key, the values of which determine the values of attributes in the sccond of the pair. The
appropriate form of relation is imported.

RDB works in much the same way as NDB, but note that Fsel is a parameler, Each relation’s attribute
set is the domain of its type map fp. A subset of the attributes are distinguished as participants in the
key.

4.2.2 I§8/1

The description of IS/1 (sec Appendix D.2) introduces a primitive form of indircction into the type
checking mechanism, ISTRELATION is very simple: it only restricts the parameter list of TYPED-
RELATION by fixing context. The two-level hicrarchical typing is done entirely in /S/1 where a type
name (from Tpnm) maps to an entity type (from Etp). The indirection is resolved in the reference 1©
ISIRELATION in the invariant. Extension to other typing systems may be approached similarly,

*In fact, an implementation can be designed which requires litle more than a ‘wriple store’ with an associative search
operation.
1®The informal ‘specification’ of NEY3 actually consists a coliection of pictures explaining these pointers.

S Summary

The NDB example is a useful reference point because it shows that the challenges which are identificd
are not contrived. The modularization proposed in Section 3 requires a number of features which are
not supported by (at least) the current module proposal for BSI-VDM. It is therefore of interest to see
which other specification languages can cope with our modularization.!! The main featurcs which are
required above are:

*

separate modules;
paramcterized modules;

the ability to nest modules so as to instantiate (some of the) parameters of a nested module from
its context;

some form of dependent types (regardless of whether the constraints are expressed by general

predicates or by some special-purpose notation):

the ability to create multiple instances of one module within another;

ways of relating operators (o the appropriate instances of multiply instantiated modules.

These points can be itlustrated, albeit with less conviction, around an example based on the ubiqui-
tous stack. A general stack can be defined which is parameterized both on a type and on a maximum

depth.

Module STACK
Parameters

types X Triv

values m - N
Exporis

types Stack

functions empty, is-full, push
Definitions

types

Stack = X*

inv(s)Blens<m

empty : — Stack

empty() 4 [}

isfull : Stack — B

is-full(s) & lens=m

*Our chosen structuring is, of course, also open to counter-proposals, It does however seem reasonabie w ask whether our
structure can be handled by a specification language before being shown an ‘improved modutarization’ which does happen o
suil that fanguage well. Tt must also be said that seeing earlier splits which itlustrated little more than thal various finitc maps
could be axiomatized was one of our initial stimuli to find a meaningful structuring of the specification.

10

e
)
rec

it

push : X ¥ Stack — Stack

pushe,s) & [e]™s

pre — is-full(s)

End STACK

A USER module, which is parameterized on a type, has an embedded YSTACK which partially
instantiates STACK by resolving its type parameter: YSTACK is thercfore only parameterized on its
maximum depth. I/SER has a type which uses multiple instances of YSTACK and which has an invariant
linking the domain value with the instance.

Module USER
Parameters

lypes Y :Triv
Exports

Local Modules
Module ¥YSTACK
Parameters
values n: N
Exports
types Stack
functions empty, isfull, push
Definitions
types

Stack = STACK[Y, n).Stack

End YSTACK
Definitions

lypes
StackMap =N - Stack[*]
inv {mk-StackMap(m)) & Vi e domm - m(i) € Stack[i]

End USER

Further Work

The problem of preparing a modularization of the {lat NDB specification in the style of Section 3.2
and Appendix C is presented as a ‘challenge’ for a existing specification languages. Responses have
already becn received in COLD-K [Fei89] and RSL[Geo89], as have comments on approaches in BSI-
VDM({Bea89). The authors consider responscs Lo date have tended 1o usc the approaches free of multiple
instances of imported modules rather than that of Section 3.2. Responses to the problems of this latter
style are particularly invited.

11

This paper has suggested specification language features which are considered desirable in solving
this structuring problem. One intention behind offering this ‘challenge’ is to discover whether other
languages can supply these features, and what the consequences of the provision of such features are
forthe language semantics. This continues to be the main area of ongoing research for one of the authors

(JSF).

Acknowledgements

The authors are grateful to the METEOR project for the invitation to CBJ (o present this work at their
final workshop and for Loe Feijs’s continued intcrest in the paper. CBJI also acknowledges stimulating
discussions with Sgren Prehn, Chris George, Peter Haff and Robert Milne on an early version of this
problem whose ‘fiat’ formulation was due to Ann Walshe. Andrzej Tarlecki, Martin Wirsing, and Don
Sannella have offered useful comments on our evolving ideas, while Juan Bicarregui, Bob Fields, lan
Hayes, Andrew Malton and anonymous referees have provided helpful review comments on drafls of
the present paper. The authors gratefully acknowledge financial support for their research: CBJ from
the SERC and Wolfson Foundation; JSF from the Department of Education for Northern Ireland.

References

[And88] D.J. Andrews. Report from the BSI panel for the standardisation of VDM (IST/5/50). In
[BJMES], pages 74-78, 1988.

(Bea88] S. Bear. Structuring for the VDM specification language. In [BIMEE], 1988.
[Bca89] S. Bear. Private communication. e-mail, December 1989,

[BI82] Dines Bjgrner and Cliff B. Joncs. Formal Specification and Software Development. Prentice
Hall International, 1982.

[BIM88] R. Bloomfield, R. B. Jones, and L. S. Marshall, editors. VDM *88: VDM — The Way Aheud,
volume 328 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1988.

{BSI) BSL VDM Specification Language - Proto-Standard. BSY Working Document: BSTIST/3/50
Document No. 40,

[Dat86} C. 1. Date. An Introduction to Database Systems. Addison-Wesley, 1986.
[Fei89] L. Feijs. Private communication, e-mail, Scptember 1989.
[Geo89] C. George. Private communication. ¢-mail, December 1989,

[Haf89] P. Haff. RSL Syntax Summary. Technical Report RAISE/DDC/PH/98/V3, Dansk Datamatik
Center, October 1989.

[HJ89] L I Hayes and C.B. Joncs. Specifications arc not (nccessarily) cxccutable. Software Erzgi-
neering Journal, 4(6):320-338, November 1989.

(IBM} IBM. Data Mapping Program: User’s Guide. SB11 - 5340.
[Jon80} C.B. Jones. Software Development: A Rigorous Approach. Prentice Hall International, 1980.

{Jon88] H.B.M. Jonkers. An introduction to COLD-K. Technical Report METEOR/t8/PRLE/S,
Philips Research Labs, Eindhoven, July 1988.

12

cr
fc
rs

[JenS0]

(7SS0}

(Mor90]

[Sha%0}

[Wal90]

(WS79}

CB. Jones. Systematic Software Development Using VDM (2nd Edition). Prentice Hall
International, 1990,

C.B. Jones and R.C.F. Shaw, cditors. Case Studies in Systematic Software Development.
Prentice Hall Intemational, 1990.

. M. Mormmis. A methodology for designing and refining specifications. In J. Woodcock,
editor, Proceedings of the 3rd Workshop on Refinement . Springer-Verlag (BCS Workshop
Series), 1990.

R. C. . Shaw. The ISTAR database. In [JS90], 1990,

A. Walshe. NDB: The formal specification and rigorous design of a single-user databasc
system. In [J590], 1990.

N. Winterbettom and G. C. H. Sharman. NDB: Non-programmer database facility. Technical
Report IBM TR.12.179, IBM Hursley Laboratory, England, September 1979,

A The Flat NDB Specification

Module FLAT-NDB
Parameters
types Eid, Value, Esetnm, Ram : Triv

Exports

operations ADDES, ADDENT, ADDREL, ADDTUP, ...
Definitions

types
Mapwp = {1:1, 1:M, M:1, M:M}

Tuple :» fv . Eid
o Eid

Rinf = p . Mapwp

roo Tuple-set

Rkey o nm : [Ram)

15 ¢ Esetnm
ty o Esetnm
state
Ndb :: esm : Esetnm -2 Eid-set

em . Eid % [Value]
rm : Rkey <"+ Rinf

inv (mk-Ndb(esm, em, rm)) &
domem = | g esm A
Vrk e domem -

tet mk-Rkey(nm, fs,1s) = rk in

tet mk-Rinf(tp, Y= rm{rk) in

{fs. 15} < domesm A

(lp=1M = Vi,nper) =n(n) = M) =HL)A
(tp =M1 = Vi, e r fult)) =fv(ty) = M) = vtz A
(=11 = Vi, ner po)=in) e) =nn)a
Vmk-Tuple(fv, tvye r-fv e esm(fs) A tv e esml(is)

13

init(ndb) & ndb=mk-Ndb({ },{},{}
operations

ADDES (es: Esetnm)
extwr esm : Esetnm - Eid-set
pre es ¢ domesm

post esm = esm\J {es > { }}

DELES (es: Esetnm)
extwr esm : Esetnm 2% Eid-set
rdrm @ Rkey =% Rinf
pre es € domesm A esmies) = { } A
es & {fs(rk) | rk e domrm} L {1s(rk) | rk & dom ra}

post esm = {es} < €5

ADDENT (memb: Esetnm-set, val: {Value)) eid: Eid
extwr esm : Esetnm " Eid-set
wrem : Eid - [Value]
pre memb C dom esm
post eid ¢ dom &m A
em = g {eid v val} A
esm = &5 T {es v E5in(es) U {cid) | es & memb}

DELENT (eid: Eid)
ext wr esm : Esetnm " Eid-set
wrem : Eid -5 [Value)
rdrm . Rkey -Zo Rinf
pre eid € domem A
Vie INr(ri) | rie mgrm} - fu(5) # cid A tv(1) # eid
post esm = {es > &5m(es) — {eid} | es € dom &m) A
em = {eid} < &m

ADDREL (rk: Rkey, tp: Maptp)
extrd esm . Esetnm -+ Eid-set
wrrm Rkey =5 Rinf
pre {fs(rk), ts(rk)} < dom esm A

rk ¢ dom rm

post rm = Fm U {rk v mk-Rinf(ip, { }))

DELREL (rk: Rkey)
extwrrm : Rkey - Rinf
pre rk & dom rm A r(rm(rk)) = {}

postrm = {rk} < fm

14

ADDTUP (fval, tval: Eid, rk: Rkey)

extwrrm : Rkey - Rinf
rd esm : Esetnm — Eid-set

pre rk ¢ domrm A
let ri = p(rm(rk), r — r(rm(rk)) O {mk-Tuple(fval, val)}) in
inv-Ndb(mk-Ndb{esm, em,rm T {rk — ri}))

post let ri = p(rm(rk), r — r{Fm(rk)) U {mk-Tuple{fval, val)}) in
i = ;‘?ﬁT {rkr——s f‘f}

DELTUP (fval, tval: Eid, rk: Rkey)
extwr rm : Rkey -=> Rinf

pre rk € demrm

post let ri = p(rm(rk), r v r(Fm(rk)) - {mk-Tuple(fval, tval)}) in
rm=rmt {rk— ri}

End FLAT-NDB

B Simple Modularization

B.1 RELATION

Module RELATION
Parameters
types £, Artr - Triv
Exports
types Tuple, Relation
functions creare, value, empiy, add, rem, attr-maich, wples, ...
Definitions

types
g Tuple = Aur "5 E

Relation = Tuple-set
inv(r) A Vi, e r-dome =dome

functions

create (Antr <5 EY — Tuple

create(m) L m

value : Tuple X Attr ~» E
value(t,ay & ya)

pre a & dom¢

15

empty : — Relation

empty() & {}

add : Relation x Tuple — Relation
add(r,f) & ru{t}

pre inv-Relation(r U {t})

rem : Relation X Tuple — Relation

rem(r,ty & r-{s}

attr-match : Relation X Attr-set — B

attr-match(r,as) & Vte r-domt = as

tuples : Relation — Tuple-set

tuples(ry & r
End RELATION

B.2 NDB using RELATION

Module FIRST-NDB
Parameters
ypes Eid, Value, Esetnm, Ram : Triv
Exports
operations ADDES, ADDENT, ADDREL, ADDTUP, ...

Definitions

lypes

Fsel= {Fs, Ts)
Imports _

all from RELATION{Eid, Fsel)
Definitions

lypes

Maptp = {1:1,1:M,M:1,M:M}
Rkey @ nm : [Rnm)

fs © Esetnm
ts 1 Esetnm

Rinf 0 1p : Maptp
r 1 Relation{Eid, Fsel)

16

state

Ndb = esm : Esetnm -2 Eid-set
em | Eid -7 [Value)
rm : Rkey <=5 Rinf
inv (mk-Ndb(esm, em, rm)) &
dom em = [g esm A
Yrk e domrm -
let mk-Rikey(rmm, fs,1s) = rk in
let mk-Rinf(tp, r)= rm(rk) in
attrs-match(r, Fsel} a
{fs, ts} < dom esm A
(p=1M =
Y, € tuples(r)-
value(t, TS) = value(ty, TS} = value(ty, ¥} = value(ty, FS)) A
{tp =M1 =
Yy, 8 & tuples(ry-
value(ty, FS) = value(t, S) => value(ty, TS) = value(tz, TS)) A
(=11 =
Vit € tuples(r).
value(t), FS) = value(ty, FS} <> value(ty, TS) = value(ty, TS)) A
Vi e tuples(r)- value(t, FS) € esm(fs) A value(t, TS) e esml(ts)

init(ndb) 2 ndb = mk-Ndb({},{},{]

operations

ADDTUP (fval, tval: Eid, rk: Rkey)

extwrrm : Rkey -T Rinf
rd esm : Esetnm - Eid-sel

pre rk € dom rp A
tet ri = p(rm(rk), r v add(r(rm{rk}}, create({I's — fval, TS = tval}})) in
inv-Ndb(mk-Ndb(esm, em, rm T {rk — ri}))

post let ri = p(Fin(rk), r v add{r(rm(rk)), create({Fs v fral, TS - tval}))) in
rm=rm T {rk v ri}

End FIRST-NDB

17

C Modularization with Typing and Normalization

C.1 TYPED-RELATION

Module TYPED-RELATION
Parameters
types £, Etp, Attr @ Triv
values tpm: Attr - Etp
functions tpc: ExEtp — B
values norm: (Attr-setx Attr)-set
Exports
types Tuple, Relation
functions create, value, empty, add, rem, ...
Definitions

types
Tuple = Atr 25 E
inv (m) 2 domm = dom tpm A Va e dom tpm - tpe(m(a), tpmay)

Relation = Tuple-set

inv(r) 2V(s,f)e norm Vi, ther-sati=sdt = Hif) =
functions

create (Attr - E) = Tuple

create(m) O m

ore inv-Tuple(m)

value : Tuple x Attr = F
value(t,a) & ta)

pre a € dom¢
empty . — Relation

empry() A ()

add : Relation x Tuple — Relation
add{r,t) & ru{s

pre inv-Relation(r u {1})

rem : Relation X Tuple — Relation

rem{r,t) £ r-—{s}

End TYPED-RELATION

18

C.2 TYPED-RELATION specialized to NDBRELATION

let Eid, Esetnm: Triv in
let Maptp = {1:1, LM, M:1, M:M} in

Module NDBRELATION
Parameters
values
Js, ts: Esetam,
esm: Esetnm - Eid-set,
mip: Mapip
Definitions
types

Fsel = {FS, TS}

Norm = (Fsel-set X Fsel)-set

functions

conv : Maptp — Norm

conv(tyy A casesty of
M:M -3 {},
M:1— {({rs},18)},
1M = {({15},19)},
Lk - {({1s},58), ({5}, T8)}

end

ipc CEidx Esethm — B

tpeleid, esn) D eid € esmesn)

values
tm = {FS v f5, TS v 18}

lmporis

all from TYPED-RELATION{Eid, Esetnm, Fsel, im, tpc, conv(mip))
Exports

types Tuple, Relation

functions create, value, empty, add, rem, ...

End NDBRELATION

C.3 The Final Structuring of NDB

3 Module NDB
- Parameters
4 lypes Eid, Value, Esetnm, Ram . Triv

19

Imports
Exports

Definitions
types
Maptp = {1:1, M, M:1, MiM}
Local Modules
Module NDBRELATION

End NDBRELATION

types

Rkey 2 nm : [Ram]
fs : Esetnm
ts ;. Esetnm

Rinf 1 tp + Mapiyp
r : Relation[*]
state
Ndb 11 esm : Esetnm -5 Eid-set
em : Eid =5 {Value)
rm : Rkey -Z+ Rinf
inv (mk-Ndb(esm, em, rm)) &
domem = Jrng esm A
Vrk e domrm -
let mk-Rkey{nm,[s,t5)= rk in
let mk-Rinf(tp, r)= rm(rk) in
{fs.ts} < domesm A
r e Relation|fs, 15, esm, tp)

init(ndb) & ndb = mk-Nab({ },{}.{ })

operations

ADDREL (nm: [Rnm), fs, s Esetnm, tp: Maptp)
extrd esm : Esetnm ~~ Eid-set

wrrm @ Rkey " Rinf
pre - -

post rm = Fm U {mk-Rkey(nm, f5,15) — mk-Rinf (1p, empty[fs, ts, esm,)}

End NDB

20

D Re-use of TYPED-RELATION

D.1 RDB

Module RDB
Parameters
types Value, Etp, Fsel, Rnm : Triv
functions tpc: Value x Etp — B
Exports

Definitiens
types
Norm = (Fsel-set x Fsel)-set

Ldcal Modules
Module RDBRELATION
Parameters
values pm: Fsel = Etp,
rip: Fsel-setx Fsel-set
Definitions
functions

nf : Fsel-set x Fsel-set — Norm

nf(ks,rs) & {(ks,r}|re rs}

Imports
all from TYPED-RELATION[Value, Efp, Fsel, tpm, tpc, nf{rip))
End RDBRELATION
Definitions

types
Rinf = tp © Fsel 5 Ep

key Fsei-set

r . Relation[*)

inv (mk-Rinf(tp, key, r)) & key < dom ip
state
Rdb= Rnm -2 Rinf
inv (rdb) & Vmk-Rinf(tp, key,r) € mgrdb - r € Relation{ip, (key, dom tp-key)]

End RDB

21

D2 IS/1

Module 15/1

Parameters
types Value, Etp, Fsel, Tpnm, Rnm @ Triv
functions tpc: Valuex Etp — B

Exports

Definitions
values

normg = { }

Local Modules
Module ISIRELATION
Parameters
values tpm: Fsel -5 Etp
Imports
all from TYPED-RELATION{Value, Etp, Fsel, tpm, tpc, normg)
End ISIRELATION
Definitions
types
Rinf :: tp . Fsel = Tpnm
r : Relation[+]
state
Ist = tm : Tpnm -5 Ep
rm . Rnm -2 Rinf
inv (mk-Is1(tm, rm)) &
Vmk-Rinf(tp,ry e mgrm -
g fp < domtm A
r € Relation[tm o tp]

End 15/1

22

